

Spettrofotometria

Services suisses d'essais d'aptitude Schweizerische Eignungsprüfungsdienststellen Servizi svizzeri di prove valutative interlaboratorio Swiss proficiency testing services

Caratteristiche

Nome del programma	NM
Frequenza delle inchieste	2 volte l'anno
Identificazione del campione	NM
Numero di campioni per inchiesta	1
Tipo di campione	Liquido
Tipo di valutazione	Quantitativa
1ª inchiesta organizzata nel	2003
Numero di partecipanti (2025)	15

Descrizione

- Questo programma di CQE permette di verificare le diverse lunghezze d'onda del fotometro e del lettore di micropiastre.
- Esso permette inoltre un controllo dei volumi pipettati.
- Ogni apparecchio va iscritto separatamente, in modo da poter seguire l'andamento dei propri risultati nel tempo.
- I laboratori che dispongono di più apparecchi avranno diversi numeri d'iscrizione (esistono tariffe particolari).

Lunghezze d'onda valutate

Codice CSCQ	Parametro	Abbreviazione	Codice OPre	Valutazione QUALAB – criterio di qualità	Tolleranza CSCQ	Risultato esempio
10334	DO a 334 nm	334 nm			5 %	0,565
10340	DO a 340 nm	340 nm			5 %	0,230
10365	DO a 365 nm	365 nm			5 %	0,112
10405	DO a 405 nm	405 nm			5 %	0,785
10436	DO a 436 nm	436 nm			5 %	1,172
10450	DO a 450 nm	450 nm			5 %	0,546
10490	DO a 490 nm	490 nm			5 %	0,266
10492	DO a 492 nm	492 nm			5 %	0,273
10505	DO a 505 nm	505 nm			5 %	0,321
10510	DO a 510 nm	510 nm			5 %	1,736
10520	DO a 520 nm	520 nm			5 %	0,947
10546	DO a 546 nm	546 nm			5 %	0,789
10550	DO a 550 nm	550 nm			5 %	0,112
10560	DO a 560 nm	560 nm			5 %	0,458
10578	DO a 578 nm	578 nm			5 %	1,642
10620	DO a 620 nm	620 nm			5 %	1,523
10630	DO a 630 nm	630 nm			5 %	0,258
10650	DO a 650 nm	650 nm			5 %	0,769
10690	DO a 690 nm	690 nm			5 %	1,882
368	Spettrometria	per uso interno del CSCQ				

Conservazione, stabilità e pre-analitica

- Il campione liquido dev'essere conservato in frigorifero (2 8 °C) e al riparo dalla luce.
- Bisogna conservare il campione chiuso fino al momento della misurazione, per evitare l'evaporazione del contenuto.
- Vedere il documento "Complemento ai programmi".

CSCQ	Spettrofotometria ⊚ cscq	Versione: 25.00	Pagina
Manuale		Aggiornamento: 2025/02/11	1 / 3

Campione di controllo

ATTENZIONE

- Allo stato concentrato, le soluzioni di controllo possono risultare tossiche.
- Queste soluzioni, benché diluite, vanno maneggiate ed eliminate seguendo la procedura abituale, in quanto sono potenzialmente irritanti per gli occhi e per la pelle.
- Le macchie sugli indumenti possono essere difficili da rimuovere.

Esecuzione della misura

- Il campione dev'essere misurato contro un campione di acqua (bi)distillata (bianco).
- Il campione è pronto all'uso. Se però la procedura abituale di misurazione prevede una diluizione, anche il campione di CQE andrà diluito secondo la stessa procedura. Attenzione: non dimenticarsi di tener conto del fattore di diluizione quando si dà il risultato.

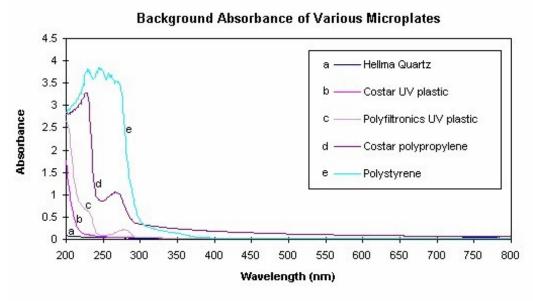
Spettrofotometro

- 1. Tarare l'apparecchio come per qualsiasi altra analisi.
- 2. Utilizzare cuvette da 10 mm di cammino ottico.
- 3. Trasferire il campione nella cuvetta e riempire la cuvetta di riferimento con acqua bi(distillata).
- 4. Misurare l'assorbanza alle lunghezze d'onda indicate.
- 5. Riportare il risultato nella rispettiva casella.
- 6. Eliminare il campione secondo il protocollo in vigore nel laboratorio.

Lettore di micropiaste

- 1. Tarare l'apparecchio come per qualsiasi altra analisi.
- 2. Depositare 200 µL di campione nei pozzetti della micropiastra; la quantità esatta è indicata sul bollettino di consegna o sul formulario dei risultati. Ogni partecipante sceglie il numero di misure da effettuare; deve corrispondere a quello praticato abitualmente.
- 3. Misurare l'assorbanza alle lunghezze d'onda indicate.
- 4. Riportare il risultato nella rispettiva casella.
- 5. Eliminare il campione secondo il protocollo in vigore nel laboratorio.

Cuvetta - micropiastra


Cuvetta

- Spettrofotometro: utilizzare preferibilmente una cuvetta in quarzo con un cammino ottico di 10 mm. Questo tipo di cuvetta è adatto a tutte lunghezze d'onda di questo programma.
- Chi non utilizza una cuvetta in quarzo deve accertarsi che la sua cuvetta non assorba la lunghezza d'onda misurata.
- Campo dello spettro dei diversi tipi di cuvette:

Vetro ottico	da 334 nm a 2500 nm
Vetro ottico speciale	da 320 nm a 2500 nm
Pyrex	da 325 nm a 2500 nm
UV Silica	da 200 nm a 2500 nm
UV Quartz	da 220 nm a 2500 nm
ES Quartz	da 180 nm a 2500 nm
Polistirene	da 340 nm a 800 nm
Metacrilato	da 285 nm a 800 nm
Quartz Spectrosil®	da 190 nm a 2700 nm
Quartz Suprasil®	da 200 nm a 2500 nm
Quartz Suprasil 300®	da 190 nm a 3500 nm
Quartz Herasil®	da 260 nm a 2500 nm
Infrasil®	da 220 nm a 3800 nm
UVette® Eppendorf	da 220 nm a 1600 nm
LMR® crystal polystyrene	da 340 nm a 800 nm
LMR® quartz	da 220 nm a 900 nm

Micropiastra

• Campo spettrale dei diversi tipi di materiale utilizzati nelle micropiastre:

Riproduzione con l'autorizzazione di P. Held, Bio-TeK® Instruments Inc.

 Alcuni fabbricanti commercializzano micropiastre con un fondo costituito da materiale speciale, trasparente alla luce UV; ciò permette la lettura a 260 e 280 nm con un'assorbanza ≤ 0,1.

Unità e fattore di conversione

- L'assorbanza (in passato densità ottica oppure DO) è senza dimensioni.
- L'assorbanza viene misurata a diverse lunghezze d'onda (λ in nm).

Principali fattori che possono influenzare i risultati delle analisi

- Utilizzo di cuvette non adatte.
- Campione di controllo lasciato aperto per troppo tempo: evaporazione, ossidazione o riduzione.
- Temperatura di misura.
- Allineamento del cammino ottico.
- Invecchiamento della lampada.
- Pulizia della cuvetta e dei pozzetti.
- Presenza di bolle d'aria o di schiuma nella soluzione misurata.

Annotazioni

© CSCQ